

CALCIUM-45 HANDLING PRECAUTIONS

⁴⁵Ca 163 d β- 0.257 No γ E 0.257

PHYSICAL DATA

Maximum Beta Energy: 0.257 MeV (100%)⁽¹⁾
Maximum Range of Beta in Air: 48 cm (19 in.)⁽²⁾

$O {\tt CCUPATIONAL} \ LIMITS^{(3)}$

Annual Limit on Intake: 2 mCi (74 MBq) for oral ingestion and 800 μ Ci (30 MBq) for inhalation.

Derived Air Concentration: 4 x 10⁻⁷ μCi/mL (15 kBq/m³).

DOSIMETRY

Millicurie (37 MBq) quantities of ⁴⁵Ca do not present a significant external exposure hazard because the low-energy betas emitted barely penetrate gloves and the outer dead layer of skin. Uptakes of ⁴⁵Ca are mostly deposited in the bone⁽⁴⁾. ⁴⁵Ca is assumed to be uniformly distributed in mineral bone and retained with a long biological half-life of 1.8 x 10⁴ days⁽⁴⁾. A smaller fraction is rapidly eliminated⁽⁴⁾. ⁴⁵Ca is initially eliminated via the urine, but eventually half the radionuclide is eliminated via the feces⁽⁴⁾.

DECAY TABLE

Physical Half-Life: 163 Days⁽¹⁾

To use the decay table, find the number of days in the top and left hand columns of the chart, then find the corresponding decay factor. To obtain a precalibration number, divide by the decay factor. For a postcalibration number, multiply by the decay factor.

			Days									
		0	5	10	15	20	25	30	35	40	45	
Days	0	1.000	0.979	0.958	0.938	0.918	0.899	0.880	0.862	0.844	0.826	
	50	0.808	0.791	0.775	0.759	0.743	0.727	0.712	0.697	0.682	0.668	
	100	0.654	0.640	0.626	0.613	0.600	0.588	0.575	0.563	0.551	0.540	
	150	0.528	0.517	0.506	0.496	0.485	0.475	0.465	0.455	0.446	0.436	
	200	0.427	0.418	0.409	0.401	0.392	0.384	0.376	0.368	0.360	0.353	
	250	0.345	0.338	0.331	0.324	0.317	0.311	0.304	0.298	0.291	0.285	
	300	0.279	0.273	0.268	0.262	0.257	0.251	0.246	0.241	0.236	0.231	
	350	0.226	0.221	0.216	0.212	0.207	0.203	0.199	0.195	0.191	0.186	

GENERAL HANDLING PRECAUTIONS FOR CALCIUM-45

- Designate area for handling ⁴⁵Ca and clearly label all containers.
- 2. Prohibit eating, drinking, smoking and mouth pipetting, in room where ⁴⁵Ca is handled.
- 3. Use transfer pipettes, spill trays and absorbent coverings to confine contamination.
- 4. Handle ⁴⁵Ca compounds that are potentially volatile or in powder form in ventilated enclosures.
- 5. Sample exhausted effluent and room air by continuously drawing a known volume through membrane filters.
- 6. Wear disposable lab coat, gloves and wrist guards for secondary protection.
- 7. Select gloves appropriate for chemicals handled.
- 8. Maintain contamination control by regularly monitoring and promptly decontaminating gloves and surfaces.
- Use pancake or end-window Geiger-Mueller detectors or liquid scintillation counter to detect ⁴⁵Ca.
- 10. Submit periodic urine samples for bioassay to determine uptake by personnel.
- 11. Isolate waste in clearly labeled containers according to approved guidelines.
- Establish air concentration, surface contamination and bioassay action levels below regulatory limits.
 Investigate and correct any conditions that cause these levels to be exceeded.
- 13. On completing an operation, secure all ⁴⁵Ca, remove and dispose of protective clothing and coverings, monitor and decontaminate self and surfaces, wash hands and monitor them again.

REFERENCES

- Kocher, David C., Radioactive Decay Data Tables, Springfield: National Technical Information Service, 1981 DOE/TIC-11026.
- 2. Kaplan, Irving, Nuclear Physics, New York: Addison-Wesley, 1964.
- U.S. Nuclear Regulatory Commission. 10CFR 20 Appendix B Standards for Protection Against Radiation, 1994.
- ICRP Publication 30, Part 2, Limits for Intakes of Radionuclides by Workers. Pergamon Press, Oxford, 1980.

